Rapid metabolic pathway assembly and modification using serine integrase site-specific recombination
نویسندگان
چکیده
Synthetic biology requires effective methods to assemble DNA parts into devices and to modify these devices once made. Here we demonstrate a convenient rapid procedure for DNA fragment assembly using site-specific recombination by C31 integrase. Using six orthogonal attP/attB recombination site pairs with different overlap sequences, we can assemble up to five DNA fragments in a defined order and insert them into a plasmid vector in a single recombination reaction. C31 integrase-mediated assembly is highly efficient, allowing production of large libraries suitable for combinatorial gene assembly strategies. The resultant assemblies contain arrays of DNA cassettes separated by recombination sites, which can be used to manipulate the assembly by further recombination. We illustrate the utility of these procedures to (i) assemble functional metabolic pathways containing three, four or five genes; (ii) optimize productivity of two model metabolic pathways by combinatorial assembly with randomization of gene order or ribosome binding site strength; and (iii) modify an assembled metabolic pathway by gene replacement or addition.
منابع مشابه
Tandem assembly of the epothilone biosynthetic gene cluster by in vitro site-specific recombination
We describe a site-specific recombination-based tandem assembly (SSRTA) method for reconstruction of biological parts in synthetic biology. The system was catalyzed by Streptomyces phage φBT1 integrase, which belongs to the large serine recombinase subfamily. This one-step approach was efficient and accurate, and able to join multiple DNA molecules in vitro in a defined order. Thus, it could ha...
متن کاملGenome Integration and Excision by a New Streptomyces Bacteriophage, ϕJoe
Bacteriophages are the source of many valuable tools for molecular biology and genetic manipulation. In Streptomyces, most DNA cloning vectors are based on serine integrase site-specific DNA recombination systems derived from phage. Because of their efficiency and simplicity, serine integrases are also used for diverse synthetic biology applications. Here, we present the genome of a new Strepto...
متن کاملControl of serine integrase recombination directionality by fusion with the directionality factor
Bacteriophage serine integrases are extensively used in biotechnology and synthetic biology for assembly and rearrangement of DNA sequences. Serine integrases promote recombination between two different DNA sites, attP and attB, to form recombinant attL and attR sites. The 'reverse' reaction requires another phage-encoded protein called the recombination directionality factor (RDF) in addition ...
متن کاملRearranging the centromere of the human Y chromosome with φC31 integrase
We have investigated the ability of the integrase from the Streptomyces phiC31 'phage to either delete or invert 1 Mb of DNA around the centromere of the human Y chromosome in chicken DT40 hybrid somatic cells. Reciprocal and conservative site-specific recombination was observed in 54% of cells expressing the integrase. The sites failed to recombine in the remaining cells because the sites had ...
متن کاملDNA cleavage is independent of synapsis during Streptomyces phage phiBT1 integrase-mediated site-specific recombination.
Bacteriophage-encoded serine recombinases have great potential in genetic engineering but their catalytic mechanisms have not been adequately studied. Integration of ϕBT1 and ϕC31 via their attachment (att) sites is catalyzed by integrases of the large serine recombinase subtype. Both ϕBT1 and ϕC31 integrases were found to cleave single-substrate att sites without synaptic complex formation, an...
متن کامل